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Abstract—This paper presents novel access patterns for P-
parallel N-point radix-2 memory-based fast Fourier transform
(FFT) architectures. This work aims to reduce the latency and
increase the throughput by changing the data order and/or
choosing different places of the architectures to input/output data.
In this way, we can eliminate the loading time and/or the time
to collect the output data. This results in a reduction in latency
and an increase in throughput. Likewise, the architectures use the
same permutation circuits for each iteration, which simplifies the
circuit. In addition to improvements in latency and throughput
with different access patterns for memory-based FFTs, this work
also offers bit-reversed or natural input/output alternatives.

Index Terms—Fast Fourier transform (FFT), radix-2, memory-
based, low latency, high throughput.

I. INTRODUCTION

Fast Fourier transform (FFT) architectures play an important
role in many signal processing applications. They are gener-
ally implemented on field-programmable gate arrays (FPGAs)
or application-specific integrated circuits (ASICs) to achieve
high-performance capabilities. This is the case of applications
such as 5G and 6G communications [1]–[5], where the FFT
is a key part of the system, and an efficient implementation
of the FFT architectures is crucial to meeting the stringent
requirements in terms of throughput, power consumption, and
latency.

Motivated by the low latency requirements in 6G communi-
cations [6], in this paper, we explore how to reduce the latency
in memory-based FFTs. Memory-based FFTs [7]–[13] are a
type of FFT architecture that calculates the FFT algorithm
iteratively. To achieve this, a memory-based FFT consists of
a set of memories, permutation circuits [14], and processing
elements (PEs) that include butterflies and rotators. Butterflies
calculate the additions and subtractions of the algorithm,
whereas rotators calculate rotations of the data in the complex
plane. With these components, the memory-based FFT first
loads the input data to the memories. Once the loading is
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finished, an iterative process to carry out the calculations of
the FFT starts. This is done by loading data from memories,
processing them in the PEs, and storing the results back in
memories. This process repeats for each stage of the FFT until
all the calculations have finished. Finally, after the processing
time, data are outputted from the FFT architecture.

To achieve low latency in memory-based architectures, we
have observed that it is possible to load data at different points
of the circuit. For instance, data can be loaded directly to the
butterflies instead of loading them first into memories. This
reduces the loading time of the architecture. Likewise, for
outputting data, after the FFT calculations have finished, it
is possible to choose different points of the circuit. All of this
leads to different access patterns for the memory-based FFT
architecture, each of them with specific characteristics. These
access patterns differ in the data order that is expected for the
inputs and outputs. For instance, some configurations allow for
natural (or normal) input order [15], [16], which means that
data are received in order from the first value, x[0], to the last
value, x[N−1], where N is the FFT size. Conversely, in other
configurations, the input order must be different. As a result,
by changing the point of the circuit where data are loaded
or output, we can modify the latency of the circuit and the
input and output order of the data. The goal of this paper is to
analyze the different architectures that result from modifying
the access pattern and compare their characteristics.

To analyze the different access patterns, we consider the
architecture proposed in [7] and modify it to achieve different
configurations. This architecture implements a conflict-free
access scheme based on the perfect shuffle permutation [17]
that allows for simplifying the permutation circuits. This
results in a reduction in the number of multiplexers in the
architecture and a simplification of the memories thanks to
the use of the same read and write addresses for all of them.
Therefore, this advanced design is an excellent candidate to
explore the new access patterns. Additionally, we present
and analyze an analogous architecture based on the perfect
unshuffle permutation. All these alternative architectures are
modeled in the paper in terms of latency and throughput.
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Fig. 1. Flow graph of a 16-point DIF FFT.

The paper is organized as follows. In Section II, we review
the main concepts needed to understand the analysis in this
paper. In Section III, we present the proposed access patterns
and analyze their characteristics. In Section IV, we compare
the different access patterns and discuss the advantages and
disadvantages of each of them. Finally, in Section V, we
summarize the main conclusions of the paper.

II. BACKGROUND

A. The FFT Algorithm

The discrete Fourier transform (DFT) is a well-known
algorithm used to transform data in the time domain to the
frequency domain. For an input sequence x[n], the N -point
DFT is calculated as

X[k] =

N−1∑
n=0

x[n]Wnk
N , k = 0, 1, ..., N − 1, (1)

where k is the output frequency, X[k] is the output at fre-
quency k, and Wnk

N = e−j 2π
N nk are rotations in the complex

plane called twiddle factors.
The FFT is an algorithm that optimizes the calculations of

the DFT by exploiting the fact that some operations of the
DFT are repeated for different frequencies. This way, the FFT
reduces the number of computations of the DFT from O(N2)
to O(N log2 N).

The FFT is commonly represented by its flow graph. The
flow graph for a 16-point radix-2 FFT decomposed according
to decimation in frequency (DIF) is shown in Fig. 1. The flow
graph consists of n = log2 N stages in the range s = 1 . . . n.

To explain the flow graph, an index I is included at the left
and the right of the figure. This index ranges from 0 to N −1
from top to bottom of the flow graph. The figure also includes
the binary representation of the index, bn−1 . . . b0, at the very
left and right of the figure. Throughout the paper, we use (≡)

to relate a number and its binary representation. Therefore, for
the case of the index, we write I ≡ bn−1 . . . b0.

The time index of the input data is shown at the input of
the flow graph. It can be observed that the time index at the
input is equal to the index I . Likewise, the frequencies of
the outputs are shown at the output of the flow graph. In this
case, the frequency is related to the index I according to the
bit reversal algorithm [18]. Thus, for any value of the index
I ≡ bn−1 . . . b0, the output frequency for that index is k(I) ≡
b0 . . . bn−1. As a consequence, if the index is in natural order at
the input, the input data are received in natural order, whereas
if the index is in natural order at the output of the FFT, the
output data are provided in bit-reversed order. We will take
into account this idea for the explanation of the architectures
in this paper.

By analyzing the flow graph itself, we can observe that it
consists of butterflies and rotations. The butterflies at stage s
add and subtract data whose index differ in bn−s [19]. For
instance, the upper butterfly at stage 1 adds and subtracts x[0]
and x[8], whose index differs in bn−s = b4−1 = b3. This
applies to the butterflies at any stage s.

The rotators calculate rotations in the complex plane. The
numbers between FFT stages, represented as ϕ, indicate the
values of these rotations. In an N -point FFT, any number ϕ
represents a rotation by

e−j 2π
N ϕ. (2)

B. Permutations in FFT Architectures

In a hardware architecture that calculates the FFT algorithm,
data are generally permuted between different stages. This
comes from the fact that bn−s is different for each stage, which
requires a reordering of the data. The way to carry out this
reordering is using bit-dimension permutations [14].

To model an FFT architecture using bit-dimension permu-
tations, we define the order of the dataflow with its position

P = t|T, (3)

where t is the arrival time of the data and corresponds to the
serial nature of the data flow, and T is the terminal where
data arrives and corresponds to the parallel nature of the data
flow. Note that a vertical bar (|) is used to separate the serial
and parallel parts. As an example, let us consider a position
P ≡ b2b0b3|b1. Thus, the sample with index I = 6, which has
b3b2b1b0 = 0110, will be in position P ≡ b2b0b3|b1 = 100|1,
so it arrives in time t = 4 ≡ 100 at the terminal T = 1.
Therefore, with this notation the place that any sample takes
in the data flow is directly determined by its position.

The changes in the data order are carried out by using bit-
dimension permutations. In this paper, we consider the perfect
shuffle [17], which corresponds to the permutation

σ(un−1un−2 . . . u0) = un−2 . . . u0un−1, (4)

and the perfect unshuffle according to

σ(un−1un−2 . . . u0) = u0un−1 . . . u1. (5)
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Fig. 2. 4-parallel memory-based FFT architecture based on the perfect shuffle.
It corresponds to both the conventional approach and Case 1 under study. They
have natural input order and bit-reversed output order.

Note that bit-dimension permutations are applied on n bits,
but they infer a permutation of N = 2n elements.

If we apply the perfect shuffle to a position P ≡ bn−1 . . . b0,
we obtain the new data order bn−2 . . . b0bn−1. If we apply it
again, we transform the order in bn−3 . . . b0bn−1bn−2. And
after the perfect shuffle is applied n times, the position will
end up in the same initial order P ≡ bn−1 . . . b0.

C. Memory-Based FFT Based on the Perfect Shuffle

The idea of calculating the perfect shuffle of the data n
times has been applied to memory-based FFTs [7] and the
resulting architecture is shown in Fig. 2. It consists of a group
of memories M0 to M3, followed by shuffling circuits, where
1’s in squares are buffers of length 1, and processing elements
(PE) that consist of butterflies and rotators. The architecture
processes P = 4 branches in parallel and is suitable for any
FFT size, N . Note the difference between P , which shows
the parallel branches of the architecture and P, which is used
for positions. A detailed explanation of this architecture is
included in [7].

In this architecture, the perfect shuffle is calculated at each
stage of the FFT, s = 1 . . . n, by combining a permutation
in the memory and the permutation of the shuffling circuits.
The consequence of this is two-fold. First, at each stage, s,
the permutation places bn−s in the lowest parallel dimension,
where the butterflies operate, which guarantees that the FFT
algorithm is calculated. Second, the permutation is the same
for all the stages of the FFT. As the memory-based FFT
calculates the algorithm iteratively and at each stage data pass
through the same circuit, the fact that the same permutation is
calculated at all the stages simplifies the architecture because
a single permutation circuit is enough for all the stages.

D. Data Flow, Latency, and Throughput in Memory-Based
FFTs

In FFTs, the latency and throughput are important metrics
of performance. The throughput provides the average number
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Fig. 3. Timing diagram of loading, processing, and output for conventional
memory-based FFTs.

of samples processed per clock cycle, whereas the latency is
defined as the total clock cycles that are needed for the whole
FFT calculation. It is important to remark that in this paper we
consider latency as the time difference from the arrival of the
first input data to the output of the last output data. Memory-
based FFTs generally process bursts of data, where they are
loaded, processed, and output. Thus, this latency represents the
time since data start to be loaded in the architecture until the
architecture is completely empty and new data can be loaded.
An alternative criterion is to consider the time from the first
input data to the last output data. This criterion is often used
in FFT architectures that process data in a continuous flow.

To define the latency and throughput, it is needed to calcu-
late the loading time of the input data, TLOAD, the processing
time, TPROC , and the time to output results, TOUT . Then, the
latency is calculated as

TLAT = TLOAD + TPROC + TOUT , (6)

and the throughput is

Th =
N

∆TFFT
, (7)

where N refers to the number of data and ∆TFFT refers the
time difference between two consecutive FFTs.

Fig. 3 shows the timing diagram of conventional memory-
based FFTs. In the figure, dashed lines separate the calcula-
tions of consecutive FFTs, L refers to the loading time of new
data, P refers to the FFT processing time, and the time to get
FFT results is represented as O.

III. PROPOSED ACCESS PATTERNS

In memory-based FFT architectures, the loading, process-
ing, and output times depend on the number of parallel
branches of the architecture, P , and the FFT size, N , being

TLOAD =
N

P
, (8)

TPROC =
N

P
· logr N, (9)

TOUT =
N

P
, (10)



where r is radix. Therefore, all FFT operations are completed
in

TLAT =
N

P
· (2 + logr N) (11)

clock cycles. However, by changing the place where data
are input/output and/or the input/output data orders, the time
of the whole FFT calculations can be reduced. In light of
this information, we have proposed four cases to reduce the
operation time, which leads to a reduction in latency and
an increase in throughput. For simplicity, these cases are
illustrated with figures with 4-parallel branches (P = 4).
However, the explanations in the paper are general for any
number of parallel branches, P = 2p, and any FFT size, N .

A. Data Order, Permutations, and Memory Addresses

To be able to understand the proposed access patterns, this
section provides some key ideas about the data orders at the
input and output, the permutations that are calculated in the
memory-based FFTs, and the way the memory is accessed.

As explained in Section II-A, the data index is equal to the
time index of the inputs and is related by the bit reversal with
the frequencies of the outputs. As a consequence, if the data
order at the input is

P ≡ bn−1 . . . bp|bp−1 . . . b0, (12)

then input data arrive in natural order to the input, whereas if
this position appears at the output, then output data are in bit
reversed order. Likewise, if the data order at the input is

P ≡ b0 . . . bp−1|bp . . . bn−1, (13)

then inputs arrive in bit-reversed order, whereas this position
at the output indicates that output data are provided in natural
order. Note that these data orders only depend on the bi bits
placed as bn−1 down to b0 or as b0 up to bn−1, which is
independent of the number of parallel dimensions, p. The fact
that there exist p parallel dimensions simply means that P =
2p values are provided per clock cycle.

Regarding the permutations in the memory-based FFT ar-
chitectures, for the proposed architectures the perfect shuffle
permutation in (4) is expressed as

σ(un−1 . . . up|up−1 . . . u0) =

un−2 . . . up−1|up−2 . . . u0un−1.
(14)

This equation includes the fact that the architecture has P = 2p

parallel branches. Therefore, a vertical bar appears in the
equation to separate the arrival time of the data and the
terminal.

The perfect shuffle permutation is carried out in three steps
as [7]

σ = σsp ◦ σpp ◦ σss, (15)

where σsp is a serial-parallel permutation, σpp is a parallel-
parallel permutation, and σss is a serial-serial permuta-
tion [14]. The permutation σss is related to memory reading

and writing addresses, which is calculated by a circular counter
that is rotated right by one bit at each stage, being

WA1 = cn−p−1cn−p−2 . . . c0,
WA2

= RA1
= c0cn−p−1cn−p−2 . . . c1,

WA3
= RA2

= c1c0cn−p−1 . . . c2,
...

WAi = RAi−1 = ci−2 . . . c0cn−p . . . ci−1,

(16)

where WAi
and RA1

are the writing and reading addresses at
the i-th iteration of the architecture, respectively, and cj is the
j-th bit of the counter.

The permutations σpp and σsp correspond to the shuffling
circuits between the memories and the PEs in Fig. 5 and are
described in detail in [7].

In this work, we introduce the possibility of using the
perfect unshuffle (5) permutation in memory-based FFTs. This
permutation is expressed as

σ(un−1 . . . up|up−1 . . . u0) =

u0un−1 . . . up+1|up . . . u1,
(17)

and consists of three permutations as

σ = σss ◦ σpp ◦ σsp. (18)

Note that the order of these permutations is opposite to the
order of the permutations in the perfect shuffle according
to (15).

The circuits that calculate the permutations σpp and σsp are
the same as in (18). However, σss permutation is achieved by
substituting the MSB of the circular counter with LSB and
shifting the other bits to the left and corresponds to

WA1
= cn−p−1cn−p−2 . . . c0,

WA2
= RA1

= cn−p−2 . . . c0cn−p−1,
WA3 = RA2 = cn−p−3 . . . c0cn−p−1cn−p−2,

...
WAi

= RAi−1
= cn−p−i . . . c0cn−p−1 . . . cn−p−i+1.

(19)

As we will observe later in the paper, using the perfect
unshuffle instead of the perfect shuffle will lead to different
input and output data orders.

B. Case 1: Natural Input - Bit-Reversed Output

Fig. 2 shows the architecture of Case 1, which corresponds
to the architecture in [7]. In the figure, IN indicates where data
are input to the architecture and OUT shows the place where
the output results are obtained. Note that a set of multiplexers
is used to either save input data in the memories or take data
from the PEs to calculate the iterations of the FFT.

In this architecture, the input and output data orders are

PIN ≡ bn−1 . . . b2|b1b0,
POUT ≡ bn−1 . . . b2|b1b0.

(20)

According to (12), input data are received in natural order and
output data are provided in bit-reversed order.

It should be noted that the bit-reversed data order in POUT

is achieved by applying the perfect shuffle permutation (14) at
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the architecture in Fig. 2 (Case 1).

each iteration. Thus, after the n iterations of the memory-based
FFT architecture, the position POUT takes the same value as
PIN .

Fig. 4 shows the timing diagram of the architecture in Fig. 2
in terms of loading, processing, and output times. In this
architecture, new data can be loaded at the same time that we
obtain the results of the previous FFT. However, this possibility
is not considered in [7], where new data are loaded only after
all the outputs have left the architecture. Additionally, output
data are provided during the last processing stage. Therefore,
in Fig. 2, the last processing stage and the output time overlap.

To receive new data at the same time that the outputs of the
previous FFT leave the architecture it is necessary to modify
the architecture in [7] slightly. In [7] the memory addresses are
obtained according to (16), and this pattern repeats for each
new FFT, being WA1

always equal to cn−p−1cn−p−2 . . . c0.
However, if new data are loaded at the same time that the
last stage of the FFT is processed and data are output, then
the new data must be stored in the memory addresses that are
being emptied. This forces the writing address of the i-th FFT
to be the same as the reading address of the (i − 1)-th FFT,
i.e.,

WA1(i) = RAn(i− 1). (21)

In practice, this simply means that the control counter contin-
ues shifting circularly from the value that it takes in the last
iteration, instead of restarting it to cn−p−1cn−p−2 . . . c0 at the
beginning of the next FFT.

According to the timing diagram in Fig. 4, the latency of
the architecture from the arrival of the first inputs until all the
outputs leave the architecture can be calculated as the sum of
the loading and processing times. As data are output directly
after the processing element at the same time that the last
iteration of the architecture is calculated and are not stored in
memory, the last FFT stage overlaps with the output time. As
a result, the latency is calculated from the values of TLOAD

and TPROC in (8) and (9) as

TLAT = TLOAD + TPROC =
N

P
· (1 + log2 N). (22)

The throughput of the architecture is also obtained from the
timing diagram in Fig. 4. In this case, the time between two
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Fig. 5. 4-parallel memory-based FFT architecture based on the perfect shuffle.
It corresponds to Case 2 under study, which has scramabled input order and
bit-reversed output order.

consecutive FFTs is

∆TFFT = TLOAD + TPROC − TOUT =
N

P
· log2 N, (23)

which, according to (7), results in a throughput of

Th =
P

log2 N
. (24)

C. Case 2: Scrambled Input - Bit-Reversed Output

Fig. 5 shows the architecture of Case 2, which is scrambled
input and bit-reversed output. The input and output positions
correspond to

PIN ≡ bn−2 . . . b1|b0bn−1,
POUT ≡ bn−1 . . . b2|b1b0.

(25)

In this architecture, the permutations are the same as in Case
1. The only difference is the place of the circuit where data
are input. Specifically, in this case data are input before the
PEs. This avoids the initial permutation of Case 1, and data
can start to be processed immediately as they are input. The
consequence of this is that input data can not be received
in natural order and must be received in a scrambled order,
which is needed for the first stage. This scrambled input order
is shown in (25).

Additionally, we obtain the output results just after the
butterfly operations, so the output time overlaps with the
processing of the last stage.

Fig. 6 shows the timing diagram of the architecture in Fig. 5.
As can be seen in the timing diagram, L and P start at the same
time, due to the fact that the FFT calculations can start as soon
as data are received. Likewise, P and O end up at the same
time. This means that the output results can be obtained during
last stage operations.

It must also be noted that the condition in equation (21)
must also be fulfilled in Case 2, to guarantee that input data
are written in the addresses that are emptied when the outputs
of the previous FFT leave the architecture.
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Fig. 7. 4-parallel memory-based FFT architecture based on the perfect
unshuffle. It corresponds to Case 3 under study, which has bit-reversed input
order and natural output order.

According to the timing diagram in Fig. 6, the latency of
the architecture is equal to the processing time, i.e.,

TLAT =
N

P
· log2 N, (26)

and ∆TFFT = TPROC , which leads to a throughput

Th =
P

log2 N
. (27)

D. Case 3: Bit-Reversed Input - Natural Output

Fig. 7 shows the architecture of Case 3, which has been
derived with the goal of obtaining natural output order. The
input data of the architecture are received just before the
PEs and the outputs are taken after the memories. Therefore,
the initial data are received in bit-reversed order and perfect
unshuffle is applied so that the output can be obtained as
natural order. The input and output positions corresponds to

PIN ≡ b0 . . . bn−3|bn−2bn−1,
POUT ≡ b0 . . . bn−3|bn−2bn−1,

(28)

which are bit-reversed input order and natural output order
according to (13). Note that POUT is obtained by applying n
times the perfect unshuffle permutation in (5) to PIN .
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Fig. 8. Timing diagram in terms of loading, processing, and output times for
the architecture in Fig. 7 (Case 3).

The reading and writing addresses of the memories corre-
spond to (19).

Fig. 8 shows the timing diagram of loading, processing, and
output data of the architecture in Fig. 7. The initial data comes
before PEs so the butterfly operations start at the same time
that data are loaded. This is why L and P are overlapped in the
figure. In order to obtain the output data in a natural order, after
the FFT operations of the last stage, data must be permuted
once again. This is shown clearly in the fact that O occurs at
the end of P in the timing diagram. However, the next FFT
operations can start while the output data are taken from the
memories. To make this possible, after new data are processed
in the PEs, they must be stored in the memory addresses that
are emptied from the previous FFT. Therefore, in Case 3, the
condition in equation (21) must be fulfilled.

The latency of the architecture in Case 3 is the sum of
TPROC and TOUT , which results in

TLAT =
N

P
· (1 + log2 N), (29)

and ∆TFFT = TPROC , which results in a throughput

Th =
P

log2 N
. (30)

E. Case 4: Bit-reversed Input - Scrambled Output

Fig. 9 shows the architecture of Case 4. As shown in the
figure, initial data comes before butterflies and output data
are taken after the butterflies. This allows to initiate FFT
operations immediately as data are received to the circuit, and
also output data as it is processed in the last stage of the
memory-based FFT architecture. In this circuit, the positions
at the input and output are

PIN ≡ b0 . . . bn−3|bn−2bn−1,
POUT ≡ b1 . . . bn−2|bn−1b0.

(31)

According to (5), input data are received in bit-reversed order.
By contrast, output data are provided in a scrambled order.
Compared to Case 3, in the architecture of Case 4, the
permutation in the memories after the PEs is not calculated,
so the output data do not reach a natural output order.



TABLE I

COMPARISON OF ALL CASES.

Access Order Performance Memory Multiplexers Complex

Pattern Input Output Latency Throughput Total Size Banks Input Arch. Mult.

Conventional Natural Bit-reversed (2 + log2 N) ·N/P P/(2 + log2 N) N + P P P P P/2

Case 1 [7] Natural Bit-reversed (1 + log2 N) ·N/P P/(log2 N) N + P P P P P/2

Case 2 Scrambled Bit-reversed (log2 N) ·N/P P/(log2 N) N + P P P P P/2

Case 3 Bit-reversed Natural (1 + log2 N) ·N/P P/(log2 N) N + P P P P P/2

Case 4 Bit-reversed Scrambled (log2 N) ·N/P P/(log2 N) N + P P P P P/2
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Fig. 9. 4-parallel memory-based FFT architecture based on the perfect
unshuffle. It corresponds to Case 4 under study, which has bit-reversed input
order and scrambled output order.

The memory read and write address are the same as in
Case 3, according to (19) and they must meet equation (21).

The timing diagram of the architecture in Fig. 9 is the same
as that of the Case 2 architecture, and is shown in Fig. 6. Since
processing begins as soon as data are received, L and P start
concurrently. At the last stage operations data can be outputted,
so the new data can be received and start to be processed. This
causes the O and L times to overlap for two consecutive FFTs.
Finally, it must be noted that although the timing diagram in
terms of loading, processing, and output times is the same
for Case 2 and Case 4, the data order in both architectures is
different.

The latency of the architecture for Case 4 in Fig. 9

TLAT =
N

P
· log2 N, (32)

and the time between two consecutive FFTs is ∆TFFT =
TPROC , which results in the same throughput as in the
previous cases, i.e.,

Th =
P

log2 N
. (33)

IV. DISCUSSION AND COMPARISON

In this paper, we have presented two different types of
architecture that perform the perfect shuffle and perfect un-

shuffle algorithms. Each of these two types is divided into
two cases according to the placement of the input and output
data. In Case 1 and Case 2, the perfect shuffle algorithm is
applied and the permutation circuits and memory read and
write addresses are the same. They only differ in the order
and placement of the input data. This causes a variation in
latency but the throughput remains the same. In Case 3 and
Case 4, the perfect unshuffle algorithm is applied. The memory
read/write addresses and the permutation circuits are the same
in these two cases. Although both cases have the same input
order, the order of the output data and the place where they
are taken have differences. This causes a variation in latency
but the throughput remains the same.

Table I compares all the proposed cases to the conven-
tional access pattern according to Figs. 2 and 3 in terms of
input/output order, latency, throughput, and area as a function
of N and P . It can be observed that all the proposed cases
improve both latency and throughput with respect to the
conventional case. This occurs due to two key contributions
of our work. On the one hand, the loading, processing, and
output times of the architectures are overlapped, which is only
possible due to writing new data in the memory addresses that
are being emptied in the previous FFT. This is achieved thanks
to the condition in equation (21). By contrast, in previous
memory-based FFTs, new data can not be loaded until all
outputs of the previous FFT have left the architecture. On the
other hand, we propose novel access patterns with different
places in the architecture where data are input and output.
This reduces the latency in Cases 2 and 4 even further.

In Table I we can also observe that conventional memory-
based FFTs generally consider natural input and bit-reversed
output orders. By contrast, in the proposed architectures a
larger variety of input and output orders is achieved. In fact,
the architectures based on the perfect unshuffle that we have
proposed in this work open a new perspective on the possibil-
ities of the data order in memory-based architectures. In this
regard, note that the architecture in Case 3 provides output
data in natural order, which was not possible by following a
conventional approach.

By comparing the proposed access patterns, it can be
observed that there is a trade-off between input/output orders
and latency. Between Case 1 and Case 2, Case 1 allows for
natural input order, but has higher latency. The same occurs



between Case 3 and Case 4. We can also observe that Cases
1 and 2 are analogous to Cases 3 and 4, and the selection
among them depends on the desired input/output data order.

Regarding area, all approaches have the same number of
resources in terms of total memory size, number of memory
banks, multiplexers, and complex multipliers. Therefore, the
proposed access patterns have the additional advantage that the
improvement in terms of latency and throughput is achieved
without increasing the hardware resources of the conventional
architecture.

V. CONCLUSIONS

In this paper, we have proposed novel access patterns
for the radix-2 P -parallel memory-based FFT architecture.
Apart from the access pattern based on the perfect shuffle
permutation presented in previous works, in this work we have
introduced the possibility of using the perfect unshuffle per-
mutation in memory-based FFTs. Likewise, we have suggested
new places in the architectures to input and output data. All
of this leads to a variety of new access patterns that have been
analyzed in the paper.

The new access patterns have been analyzed in terms of
throughput and latency. Based on this analysis, it has been
observed that they allow for reducing latency and increasing
throughput with respect to conventional approaches. Further-
more, this improvement is achieved without increasing the
number of hardware resources of the architecture, which
makes these access patterns very useful to increase the per-
formance in memory-based architectures. This is crucial for
5G and 6G systems, which present stringent requirements in
terms of latency and throughput.
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